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Abstract

An important requirement of household energy sim-
ulation models is their accuracy in estimating energy
demand and its fluctuations. Occupant behavior has a
major impact upon energy demand. However, Markov
chains, the traditional approach to model occupant be-
havior, (1) has limitations in accurately capturing the
coordinated behavior of occupants and (2) is prone to
over-fitting. To address these issues, we propose a novel
approach that relies on a combination of data mining
techniques. The core idea of our model is to determine
the behavior of occupants based on nearest neighbor
comparison over a database of sample data. Importantly,
the model takes into account features related to the coor-
dination of occupants’ activities. We use a customized
distance function suited for mixed categorical and nu-
merical data. Further, association rule learning allows us
to capture the coordination between occupants. Using
real data from four households in Japan we are able to
show that our model outperforms the traditional Markov
chain model with respect to occupant coordination and
generalization of behavior patterns.

Introduction
Human behavior is a major determinant of energy con-
sumption in buildings, particularly in the residential sector
(Lopes, Antunes, and Martins 2012; Karatasou, Laskari, and
Santamouris 2013). The way household members perform
their daily routines, share rooms or use electrical appliances,
can greatly impact total energy use. Yu et al. (2011) found
that occupant behavior was responsible for variations on the
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order of up to four times the mean annual energy consump-
tion of buildings, based on the investigation of six residen-
tial districts in Japan that were clustered according to other
influencing factors such as city climate and building charac-
teristics.

An increasing number of energy demand models (Kavgic
et al. 2010) simulate the influence of occupant behavior upon
energy consumption. In these models, households are sim-
ulated as multi-agent systems, where occupants are repre-
sented as social agents that behave according to the rules
prescribed by Markov chains. Here, Markov chain proba-
bility matrices are calculated from time-use (TU) data, i.e.,
sequential high-resolution information of the real-life daily
routines of household occupants, such as sleeping or having
meals.

Traditional Markov chains show two important limita-
tions as a technique to accurately encode occupant behav-
ior. First, they do not accurately capture the coordinated be-
havior of household members, such as joint activities. By
joint activity we mean joint-in-purpose (having meal, hav-
ing bath, etc.) rather than joint-in-time or joint-in-location,
following the distinction of Gliebe and Koppelman (2002).
Second, these models are prone to over fitting. Since they
tend to accurately replicate the given, relatively sparse TU
data, they fail to generalize from the input trends.

To address these shortcomings, we propose an alternative
approach to the Markov chain approach, which is based on a
combination of data mining techniques. The core idea of our
approach is that we predict agents’ behavior by searching the
TU database for past household states that resemble the cur-
rent one. To select a past similar state we use nearest neigh-
bor comparison based on a normal distribution. This mech-
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anism aims to generate a model that can generalize from the
input TU data. In addition, the nearest neighbor comparison
allows us to more accurately represent coordinated agent be-
havior.

The paper is structured as follows. The next section re-
views major work in the fields of occupant behavior mod-
eling and multi-agent systems that estimate energy demand.
Then we detail our proposed model. Next, we compare the
performance of traditional Markov chains to our model us-
ing real data of household occupant behavior. Finally, we
discuss and conclude the paper.

Related Work
Energy demand models can be classified in two broad cat-
egories: ‘top-down’ and ‘bottom-up’ models (Swan and
Ugursal 2009; Grandjean, Adnot, and Binet 2012). The two
approaches differ in the concepts and principles used for
the modeling of demand. The top-down approach follows
standard macroeconomic modeling techniques, whereas the
bottom-up approach is based on the concept of disintegra-
tion. Top-down models describe behavioral relations at an
aggregated level. By contrast, bottom-up models calculate
energy demand at the level of the individual household, oc-
cupant or electrical appliance.

Several bottom-up models have recently been proposed
in the energy field (Dounis and Caraiscos 2009; Widén and
Wäckelgård 2010; Shimoda et al. 2010), which are based on
the concepts of ‘agent’ and multi-agent system (as defined
in Jennings, Sycara, and Wooldridge 1998). In those models,
the occupant is modeled as a situated agent that can receive
sensory input from the household environment, such as in-
formation on electrical appliance usage. The agent can per-
form actions in that environment, such as moving between
rooms or using electrical appliances. Each agent decides its
actions autonomously, in each simulation step, showing re-
sponsive and pro-active behavior.

Bottom-up models based on multi-agent systems are used
for two distinct purposes: (i) real-time energy demand pre-
diction and (ii) simulation. In the first case, models gen-
erate real-time predictions of occupant behavior. For in-
stance, Mamidi, Chang, and Maheswaran (2012) proposed
an approach to improve the energy efficiency of commercial
buildings by controlling the HVAC (heating, ventilation, and
air conditioning) systems according to an occupancy predic-
tion model that estimates the presence or absence of persons
in a room.

In the second case, models aim at the simulation of energy
demand by generating probability densities of occupants’
behavior. These models target the simulation the energy con-
sumption of residential areas for extended periods of time.
They can be used to investigate how new energy policies or
smart grid technological advancements might impact energy
consumption of an urban area. For instance, Shimoda et al.
(2010) used an multi-agent approach to simulate the energy
consumption and CO2 emissions of the residential sector of
Japan by 2025. Several CO2 mitigation measures were eval-
uated using the simulation model as a test-bed.

The techniques used to model occupant behavior differ
greatly depending on the purpose of the multi-agent system.

Real-time prediction relies on sensor data and employs ma-
chine learning methods (Mamidi, Chang, and Maheswaran
2012) or genetic algorithms (Yu 2010) to predict e.g. room
occupancy. In contrast, multi-agent systems rely on TU data
and typically use Markov chains to simulate the behavior of
occupants (Yamaguchi, Tanaka, and Shimoda 2012).

To date, most multi-agent systems aiming at energy de-
mand simulation have modeled households as a set of
non-interacting individuals (Munkhammar and Widén 2012;
Baptista et al. 2014). This means that current systems are
based on the assumption that the probabilities of the activi-
ties of a household member are not dependent on the activi-
ties of other occupants. Accordingly, these systems often fail
to capture the coordination between occupants, such as the
shared use of lighting and other electrical appliances. This
in turn translates into inaccuracies in energy demand esti-
mation.

Current energy demand simulations based on Markov
chains present additional limitations, such as the inaccu-
rate modeling of the duration and temporal order of activ-
ities. Another constraint of current energy demand simu-
lations relates to over-fitting of simulated activities to the
original TU data. This results in Markov chain based mod-
els being often unable to generalize beyond TU data to new
data. Some authors (Tanimoto, Hagishima, and Sagara 2008;
Richardson et al. 2010; Yamaguchi, Tanaka, and Shimoda
2012) have attempted to address these points using alterna-
tive approaches to Markov chains, with some success.

Nearest Neighbor (NN) Model
In this section, we introduce our approach to modeling occu-
pant behavior in multi-agent systems. Our approach is based
on data mining techniques that allow us to model the be-
havior of occupants in a household as a set of coordinating
agents that learn from historical real-world data to decide
their daily routines.

Our model assumes the existence of n agents that repre-
sent the occupants of a household. It also assumes the ex-
istence of m simulation time-steps. In each time-step, each
agent in the household must decide its next behavior from a
set of possible alternatives such as sleeping or having bath.
The agents decide their behaviors taking into account the
behaviors of others, as in real life.

The reasoning of an agent for a time-step t involves
three stages. First, in the initialization stage, the agent col-
lects all the necessary data about the current state of the
household (xt). Second, in the prediction stage, the current
state is matched against a structured database of real-world
household states representing time-use data (TU data). The
database is classified according to the resemblance of states
to the current state, using a customized measure of similar-
ity. A normal distribution (N (0, σ2)) determines the maxi-
mum allowed similarity distance i between the current state
and the states in the database. This forms the set of predic-
tive states ({w0, . . . , wk}). By predictive states we mean the
set of states in the database that, due to their similarity to
the current state, are likely to predict what occupants will do
next. We assume that if two household states are similar then
there is a high probability that the next activity of one state
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is also the next activity for the other state. We assume that
all predictive states have the same probability to accurately
determine the next behavior of the agent. Hence, we use a
random function to select the preferred predictive state (w)
from the set of predictive states.

We introduce the notion of ‘maximum allowed similar-
ity distance’ (i) to allow the agent to perform less restricted
matches of the sample database while predicting its next be-
havior. In turn, the normal distribution mechanism ensures
some degree of restriction in the selection of the set of pre-
dictive states. The effectiveness of the selection of this set
greatly determines how well our model can fit the sample
data and generalize from it. With this approach we aim to
achieve a balance between over-fitting and under-fitting.

We assume that all predictive states have an equal prob-
ability of being selected and determine the agent’s next be-
havior accordingly. Note that the normal distribution mecha-
nism already implements an approach that favors states with
similarity distances close to zero.

The third stage of the reasoning process consists in the ex-
ecution stage of the selected behavior. In the execution the
agent mimics the occupant behavior predicted by the state
chosen in the prediction stage. The agent’s reasoning cycle
continues until the simulation ends.

Initialization
At each time-step t the agent senses the household environ-
ment according to an array of characteristics (features):

1. Activity, room and appliances used by agent at previous
time-step (t− 1);

2. Length in time-steps (duration) of the on-going activity
(l);

3. Activities, rooms and appliances used by one other occu-
pant at current time-step (t). This other (leader) occupant
is selected as the agent whose behavior is more strongly
related to the current behavior of the agent. Relations be-
tween the behaviors of agents (two agents mainly) are
generated through association rules learning (Agrawal,
Imieliński, and Swami 1993) in the original TU data with
the Apriori algorithm (Agrawal et al. 1996). The Apriori
algorithm is applied to a collection of activities performed
by pairs of occupants in each time-step. The algorithm
runs on this collection to find the most frequent relations.
Strong relations are required to satisfy a minimum con-
fidence value and are prioritized according to their sup-
port value. Leader agents are identified with basis on this
strong relations according to the actual context of the sim-
ulation.

Finally, the feature vector representing the household cur-
rent state (xt) is passed to a prediction system.

Prediction
Having the feature vector as input (xt), the agent must de-
cide its next behavior based on a database of TU data using
a fixed-radius near neighbors (FRNN) comparison (Bentley
1975). Given a feature vector and a distance i defined by a
normal distribution N (0, σ2), the FRNN search reports the

set of predictive states {w0, . . . , wk} from the database that
are within distance i of the feature vector. The search is opti-
mized with a kd-tree approach. Prediction is complete when
a random state w is chosen from the set of states returned by
the FRNN search.

Since the set of features that characterize a household
state include categorical attributes (such as activities, rooms,
appliances) and numerical attributes (such as length of on-
going activity), we use the method of Ahmad and Dey
(2007) to compute the distance between two data elements.

Our distance function uses a weighted squared value of
the Euclidean distance. All numeric attributes are normal-
ized to be on the same scale. This function is specially suited
to compute similarity between categorical data objects. For
instance, consider the categorical attribute of activity for the
following data objects: ‘Bathing’, ‘Showering’ and ‘Study-
ing’. Our customized distance measure can recognize that
the activities ‘Bathing’ and ‘Showering’ are more similar
than the activity of ‘Studying’ to either of them.

Our method works well in capturing similarity because
it considers the distribution of values in the dataset while
computing the distance between two attribute values. For
instance, consider the way the algorithm computes the dis-
tance (distance(A,B)) between two activities A, B. Let N
be the number of activities and act represent an activity,
1 ≤ act ≤ N . As shown in Algorithm 1, distance between
activities is computed as a function of activities distribution
in the overall dataset taking into account co-occurrence with
other activities.

Algorithm 1 Calculating distance of activities
distance(A,B)← 0
act← 1
for act ≤ N, act++ do

if P (act|A) ≤ P (act|B) then
distance(A,B)← distance(A,B) + P (act|B)

else
distance(A,B)← distance(A,B) + P (act|A)

end if
end for
distance(A,B)← distance(A,B)− 1

Execution
After selecting a predictive state w from the TU data, the
next behavior of the agent is executed. This may involve the
selection of the agent’s next activity such as sleeping or hav-
ing meals and also its location in the household as well as the
electrical appliances used. This execution changes the state
of the agent and household.

Experiment
The aim of this section is to compare the accuracy of two
approaches to the modeling of occupant behavior in multi-
agent systems of energy demand estimation: the standard
Markov chain (MC) model and our Nearest Neighbor (NN)
model.
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Markov Chain (MC) Model
To compare the performance of our NN model with the state-
of-the-art approach to modeling occupant behavior, we have
developed a model based on discrete non-homogeneous
Markov chains, following the implementation of Widén,
Nilsson, and Wäckelgård (2009). In our model, time-step
transition probabilities are estimated from TU data with the
following equation:

τij(n) =


0, if

|S|∑
j=1

ηij(n) = 0

ηij(n)
|S|∑
j=1

ηij(n)

, otherwise

where τij(n)[0, 1] defines the time-step transition probabil-
ity that the system will evolve from state i to state j (assume
the existence of S states) from time n to n + 1 and ηij(n)
stands for the number of occurrences of transitions between
states i and j from time n to n+ 1.

Time-step transition probabilities define the likelihood of
an agent to change state in a given time-step. States in the
model correspond to the daily routines of the occupant, such
as ‘Sleeping’, ‘Being outside’, ‘Having meal’, and so on.

Indicators and Hypotheses
We assess the accuracy of the MC and NN models accord-
ing to some important indicators as presented in Table 1.
Three of the four indicators are taken from the literature,
the first indicator (I1) is our original indicator. This indica-
tor measures if the models accurately reproduce how often
an occupant performs an activity as a joint activity, or sole
activity. This indicator is important since the simultaneous
performance of an activity, such as watching TV or cooking,
implies the sharing of electrical appliances. As a result, the
accurate estimation of the time that occupants perform an
activity simultaneously with others or individually may al-
low us to more accurately estimate the time when electrical
appliances are shared.

Indicator I2 relates to variations in timing of performing
some activity. Such variation is important when peak de-
mand of large residential areas is estimated (Tanimoto, Hag-
ishima, and Sagara 2008). In the energy field, this indica-
tor is often used to evaluate the diversity of agents’ behav-
iors (Tanimoto, Hagishima, and Sagara 2008; Yamaguchi,
Tanaka, and Shimoda 2012).

Based on the most prominent indicators from the litera-
ture (see Table 1), we formulate our hypotheses as follows:
• Coordinated Behavior Hypothesis: our NN model is more

accurate than the MC model in estimating the time an oc-
cupant performs an activity as a joint or sole activity (In-
dicator I1).

• Patterns of Behavior Hypothesis: our NN model can gen-
erate a higher number of different patterns of behavior
transitions than the MC model (Indicator I2).
The hypotheses have been tested with real TU data. Re-

garding the Indicators I3–I4, we do not claim that our NN
based approach outperforms the MC based approach.

Indicators

I1 Time performing an activity jointly with others
I2 # of different patterns of occupant behavior transitions
I3 Probability distribution showing percentage of activity

at each time step
I4 Number of activity transitions per day

Table 1: Indicator I1 is our original indicator; Indicators I2-
I4 are proposed in (Yamaguchi, Tanaka, and Shimoda 2012).

Data
The data used in our experiment was collected from four
households in the region of Osaka, Japan, in late 2011
and beginning of 2012. The surveyed household members
agreed to document their daily routines in diaries during
14 days, on a minute by minute basis. Behaviors are clas-
sified in thirty categories (see Table 2). Table 3 describes the
household composition, dwelling type and surveyed period
for each household in the data set.

Activities

1 Being outside 16 Other housework
2 Sleeping 17 Communication
3 Having meal 18 Hobbies
4 Face washing 19 TV in living room
5 Bathing 20 TV in bedroom
6 Changing clothes 21 Stereo living room
7 No activity living room 22 Reading living room
8 Working at home 23 Reading bedroom
9 Studying 24 Stereo bedroom
10 Cooking 25 Video
11 Cleaning dishes 26 No activity bedroom
12 Cleaning living room 27 Showering
13 Cleaning other rooms 28 Having breakfast
14 Clothes washing 29 Having lunch
15 Ironing 30 Having dinner

Table 2: Available categories of activities in a household.

Methodology
Our NN model was compared with the traditional MC model
using the following methodology:

• Simulation: Each of the four households is simulated us-
ing the MC model and the NN model (σ2 = 0.002). In
each simulation of a household, the daily activities of the
occupants are reproduced for a period of 500 days.

• Validation: The accuracy of the models is assessed by
comparing their output with the original TU data.

This validation method is the standard approach to vali-
dating occupant behavior models in the energy field (Widén,
Nilsson, and Wäckelgård 2009; Widén and Wäckelgård
2010; Tanimoto, Hagishima, and Sagara 2008; Yamaguchi,
Tanaka, and Shimoda 2012). It is important to note that
this approach is different from a method like 10-fold cross-
validation, which is used to validate models generated by
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Dwelling Period Occupant Abbr

HA
Detached
house 3LDK

30 Oct 12 11
Nov 11

Working male M(A)
Working female F(A)
High-school H(A)
Junior high-school J(A)

HB
Appartment
4LDK

16 Jan 12 29
Jan 12

Working male M(B)
Working female F(B)
Primary school P(B)
Junior high-school J(B)

HC
Appartment
4LDK

7 Dec 11 21
Dec 11

Working male M(C)
Housewife F(C)
Primary school P(C)

HD
Appartment
4LDK

8 Dec 11 22
Dec 11

Working male M(D)
Housewife F(D)
Primary school P(D)

Table 3: Household composition of the TU dataset with 3 or
4 rooms and LDK (Living, Dining, Kitchen).

machine learning techniques (Mamidi, Chang, and Mah-
eswaran 2012). Please note that the models we study output
probability densities rather than specific predictions.

Results
We first present results regarding the Coordinated Behav-
ior Hypothesis (Indicator I1) and the Patterns of Behavior
Hypothesis (Indicator I2). Then we present results for Indi-
cators I3 and I4.

Coordinated Behavior Hypothesis
Table 4 reports the average error (in minutes) in estimating
the time each occupant spent performing an activity jointly
with others (I1) for both MC and NN models. It also shows
the results of Student t-tests. We note that these estimation
errors were calculated only from activities that were per-
formed jointly by the occupants.

Interestingly, we obtain different results for 3- and 4-
person households. In 4-person households (A and B), we
found that our NN model is better than the MC model,
mostly with statistical significance (or near-significance),
except for one case. In 3-person households (C and D), the
MC model is better in the majority of cases. Hence, our re-
sults only partially support the Coordinated Behavior Hy-
pothesis.

With a larger number of household members it is more
likely that an occupant performs some activity jointly with
another occupant. Since our NN model explicitly models
joint activity, it performs better in 4-person households than
in 3-person households.

We found differences in the performance of NN model
related to the joint duration of activities. Here, joint dura-
tion is time of activity performing together with others. In
activities with large joint duration such as ‘Sleeping’, ‘Be-
ing outside’, ‘TV in living room’ and ‘Hobbies’, the better
performance of NN is not as pronounced as for remaining
activities. For these four activities, Student t-tests could only
reveal a statistically significant difference between NN and

Occupant Estimation Error
MC NN p

M(A) 7.55 7.2 0.18
F(A) 9.05 8 <0.05
H(A) 9.3 8.3 <0.05
J(A) 7.8 7.35 0.12

M(B) 11.1 11.15 0.43
F(B) 8.35 7.75 0.06
P(B) 10.35 7.15 <0.05
J(B) 10.75 9.3 <0.05

M(C) 6.3 6.5 0.25
F(C) 6 6 0.45
P(C) 5.95 6.4 0.09

M(D) 7 7.7 0.09
F(D) 6.65 8.55 <0.05
P(D) 8.7 8.8 0.37

Table 4: Average daily estimation error (in minutes) of time
performing an activity jointly with others (I1) for NN and
MC models.

MC for 3 cases. The average difference of error was of 1%
(35.6 to 36.1min). For remaining activities, difference was
the double: 2% (1.2 to 1.19min) and t-tests proved differ-
ence between models for six cases. These differences can be
explained by NN overcoming the limitations of MC in mod-
eling the coordination of agents in short joint time activities
(Yamaguchi, Tanaka, and Shimoda 2012).

It is important to note that the NN model not only repli-
cates but also generalizes from the coordination behavior
patterns found in TU data. The MC model tries to predict
the future based on samples of TU data that exactly match
the current state in the dimensions of time and activity (Bap-
tista et al. 2014). By contrast, our NN model is not limited
to perfect matching with TU data, and thus is less prone to
over-fitting. The NN model occasionally picks a state from
the past TU data that is slightly dissimilar to the current state
with regard to some dimension (time or activity). Simply
put, the NN model trades accuracy for generality.

Patterns of Behavior Hypothesis
Fig. 1 compares the number of different patterns of occupant
behavior transitions per day (I2) found in TU data, MC and
NN model. We calculate this indicator by first counting, for
each time-step, the number of distinct transitions registered
in all the simulated days. Here, transition means a change
from an activity to a different activity. Then, we sum the
distinct transitions of each time-step for all time-steps.

As illustrated in Fig. 1, the number of different daily be-
havior transition patterns registered in all simulations runs is
very different in MC and NN. The MC model generated as
much distinct patterns as the ones found in TU data. By con-
trast, the NN model was able to generate up to 394 new pat-
terns averaging 228 new patterns per occupant. Hence, our
results strongly support the Patterns of Behavior Hypothesis.

Fig. 2 shows, for each time step, the number of distinct
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Figure 1: Comparison of number of different patterns of oc-
cupant behavior transitions (I2) per day.

transitions (transition patterns) registered during the 500
simulations runs of the MC model (top chart) and NN model
(bottom chart) for occupant M(A). The figure illustrates that
the NN model generates far more patterns than TU data and
MC model. Additionally, the NN model generates transition
patterns in time ranges near the ones of the original patterns.
In other words, NN agents are able to delay and advance, the
transitions found in the TU data.
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Figure 2: Comparison of average number of different be-
havior transitions (I2) generated by MC and NN models for
occupant M(A).

Other Indicators
Table 5 presents the average, maximum and standard devia-
tion of Indicators I3 and I4.

MC NN
Avg Max STD Avg Max STD

I3 0.001 0.003 0.0005 0.003 0.004 0.0008
I4 3.55 5.17 0.88 3.52 4.87 0.87

Table 5: Estimation errors of indicators I3 and I4.

Student t-tests were used to compare the MC and NN
models with respect to indicator I3 and I4. For Indicator I3,
Student’s t-test did not show a statistically significant differ-
ence for 13 of the 14 occupants. In the case of Indicator I4,
Student’s t-tests could reveal a statistically significant differ-
ence (p < 0.05) for 8 out of 14 occupants.

The results on Indicators I3 and I4 are important as they
show that the NN model is comparable to the MC model in
modeling (1) the way agents perform activities at each time-
step (I3) and (2) how often agents change their activities in
a day (I4). The second finding is noteworthy: even though
NN generates more patterns of transitions (I2), this does not
influence the accuracy of the number of transitions per day
(I3). In other words, NN agents change activities during a
day as often as MC agents despite the fact that changes of
activities are being delayed or advanced in time. We note
that we calibrated NN to delay and advance activities to a
maximum of one time-step (5 minutes).

Conclusions
Energy demand simulations play an important role in im-
plementing the smart grid and in reducing CO2 emissions.
Human behavior is at the core of these simulations; the way
household occupants behave and interact with each other can
greatly determine the accuracy of demand estimation. Our
work attempts to present a new perspective on occupant be-
havior modeling by accommodating three factors: individual
behavior, coordination of behavior among occupants, and di-
versity of behavior patterns.

We present a Nearest Neighbor (NN) occupant behavior
model that (1) aims to replicate coordinated behavior more
accurately than a Markov Chain (MC) model, the state-of-
the-art approach, while at the same time (2) generalizes new
patterns of behavior. Our results suggest that our solution is
a good compromise between agreement of simulated data to
TU data and generalization of patterns.

There are two main research directions for future work.
The first line of research will focus on validating the qual-
ity of the new generalized patterns of data. As our model
outputs density probabilities, we can investigate density es-
timation cross validation techniques (Marron 1987).

The second direction relates to further exploring coordi-
nation of agents. For instance, we may consider more than
one leader in the household or coordinate all agents at the
same time. The influence of these strategies upon variability
of coordinated behavior is an important future topic.
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Agrawal, R.; Imieliński, T.; and Swami, A. 1993. Mining
association rules between sets of items in large databases.
ACM SIGMOD Record 22(2):207–216.
Ahmad, A., and Dey, L. 2007. A K-mean clustering al-
gorithm for mixed numeric and categorical data. Data &
Knowledge Engineering 63(2):503–527.
Baptista, M.; Prendinger, H.; Prada, R.; and Yamaguchi, Y.
2014. A cooperative multi-agent system to accurately esti-
mate residential energy demand. In Proc. of the 13th Conf.
Autonomous Agents and Multiagent Systems. IFAAMS.
Short paper.
Bentley, J. L. 1975. Survey of techniques for fixed radius
near neighbor searching. Technical report, Stanford Linear
Accelerator Center, Calif.(USA).
Dounis, A. I., and Caraiscos, C. 2009. Advanced control
systems engineering for energy and comfort management in
a building environment A review. Renewable and Sustain-
able Energy Reviews 13(6):1246–1261.
Gliebe, J. P., and Koppelman, F. S. 2002. A model of joint
activity participation between household members. Trans-
portation 29:49–72.
Grandjean, A.; Adnot, J.; and Binet, G. 2012. A review and
an analysis of the residential electric load curve models. Re-
newable and Sustainable Energy Reviews 16(9):6539–6565.
Jennings, N. R.; Sycara, K.; and Wooldridge, M. 1998. A
roadmap of agent research and development. Autonomous
agents and multi-agent systems 1(1):7–38.
Karatasou, S.; Laskari, M.; and Santamouris, M. 2013.
Models of behavior change and residential energy use: A re-
view of research directions and findings for behavior-based
energy efficiency. Advances in Building Energy Research
1–11.
Kavgic, M.; Mavrogianni, A.; Mumovic, D.; Summerfield,
A.; Stevanovic, Z.; and Djurovic-Petrovic, M. 2010. A re-
view of bottom-up building stock models for energy con-
sumption in the residential sector. Building and Environment
45(7):1683–1697.
Lopes, M.; Antunes, C.; and Martins, N. 2012. Energy
behaviours as promoters of energy efficiency: A 21st cen-
tury review. Renewable and Sustainable Energy Reviews
16(6):4095–4104.
Mamidi, S.; Chang, Y.-H.; and Maheswaran, R. 2012. Im-
proving building energy efficiency with a network of sens-
ing, learning and prediction agents. In The 11th Conf. Au-
tonomous Agents and Multiagent Systems, AAMAS 2012,
45–52. IFAAMS.

Marron, J. 1987. A comparison of cross-validation tech-
niques in density estimation. The Annals of Statistics 152–
162.
Munkhammar, J., and Widén, J. 2012. A stochastic model
for collective resident activity patterns and energy use: pre-
liminaries. In Future technology press, 1–4.
Richardson, I.; Thomson, M.; Infield, D.; and Clifford, C.
2010. Domestic electricity use: A high-resolution energy
demand model. Energy and Buildings 42(10):1878–1887.
Shimoda, Y.; Yamaguchi, Y.; Okamura, T.; Taniguchi, A.;
and Yamaguchi, Y. 2010. Prediction of greenhouse gas re-
duction potential in Japanese residential sector by residential
energy end-use model. Applied Energy 87(6):1944–1952.
Swan, L. G., and Ugursal, V. I. 2009. Modeling of end-
use energy consumption in the residential sector: A review
of modeling techniques. Renewable and Sustainable Energy
Reviews 13(8):1819–1835.
Tanimoto, J.; Hagishima, A.; and Sagara, H. 2008. A
methodology for peak energy requirement considering ac-
tual variation of occupants behavior schedules. Building and
Environment 43(4):610–619.
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